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A Fourier transform for sheaves on real tori
Part I. The equivalence Sky(T ) � Loc(T̂ )
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Abstract

As a first step toward a theory of a real Fourier transform for sheaves on Calabi–Yau manifolds
fibred in special Lagrangian tori, we explicitly construct the functors which establish the equivalence
between the category of skyscraper sheaves of finite-dimensional vector spaces on a real torus T ,
and the category of local systems (locally free sheaves of C-modules of finite rank) on the dual
torus T̂ . © 2001 Elsevier Science B.V. All rights reserved.

MSC: 58J22

Subj. Class.: Differential geometry

Keywords: Fourier transform; Sheaves; Real tori

1. Introduction

A “Fourier” transform, mapping coherent sheaves on an abelian variety X to coher-
ent sheaves on the dual variety X̂, was introduced by Mukai [13] (more precisely, the
Fourier–Mukai transform is a functorD(X)→ D(X̂), whereD(X) is the derived category
of coherent sheaves of OX-modules). A relative Fourier–Mukai transform for elliptic sur-
faces was developed in [3,4,6,9] and was shown to play a role in the description of mirror
symmetry for K3 surfaces [2,3]; this Fourier–Mukai transform describes the transforma-
tion of D-branes under mirror symmetry, as suggested by the Strominger–Yau–Zaslow
conjecture [14].

In the case of Calabi–Yau threefolds, which, again in accordance with the Strominger–
Yau–Zaslow conjecture, are supposed to be fibred in (special Lagrangian) real 3-tori (see
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[8] and references therein for a mathematical treatment), a similar description should
be provided by a “real” relative Fourier transform. Here a great difficulty is offered by
the presence of singular fibres. As a first approximation one can consider the simpli-
fied case of smooth fibrations (of course in this case the Calabi–Yau manifold is non-
compact).

In this paper we take a first step toward the construction of this transform by defining
the functors which establish the equivalence between the category Sky(T ) of skyscraper
sheaves of finite-dimensional vector spaces on a real torus T , and the category Loc(T̂ ) of
local systems (locally free sheaves of C-modules of finite rank) on the dual torus T̂ (this
results parallels the one holding in the holomorphic category, cf. [12]). This provides a proof
for the claim forwarded by Arinkin and Polishchuk in [1]. In this connection, it should be
remarked that this result (Theorem 3.12 in this paper) is just stated in Ref. [1], and the
inverse functor is not constructed there.

Further papers will deal with the relative case (in this connection, one should notice that
some results are already contained in [11]). In particular, in a second part of this series we
shall describe a relative real Fourier–Mukai transform which establishes an equivalence be-
tween the category of local systems supported by Lagrangian submanifolds of a symplectic
family of real tori X, and a category whose objects are holomorphic families of relatively
flat vector bundles on the dual family X̂. This should be related to the assumed equivalence
between the Fukaya category of X and a suitable deformation of the derived category of
coherent sheaves on X̂.

This paper is structured as follows. In Section 2 we offer a description of (smooth) U(1)
bundles on real tori in terms of their factor of automorphy which fully parallels the one
available (in the holomorphic case) on complex tori (cf. [10]). This description of line
bundles will be extensively used in the remainder of the paper. In Section 3.2 we describe
two complexes which are naturally associated with the Poincaré sheaf. In Section 3.3 we
introduce the functor Sky(T )→ Loc(T̂ ). In Section 3.4 we introduce the functor Loc(T̂ )→
Sky(T ) and compute its action on local systems. This will require the computation of the
cohomology of a complex associated with the Poincaré bundle and will form the main
technical part of the paper.

2. Line bundles on real tori

2.1. Factors of automorphy

Let Λ be a g-dimensional lattice in a g-dimensional real vector space V , and let T =
V/Λ be the corresponding torus. Let Pic(T ) denote the group of isomorphism classes of
U(1) bundles on T . The group Pic(T ) is isomorphic to a group P(Λ) we may associate
with the lattice Λ in the following way. As a set, P(Λ) is the set of pairs (A, χ), where
A ∈ Alt2(Λ,Z) is an alternating two-form on Λ, and χ is a semicharacter for A, namely,
a map χ : Λ→ U(1) such that

χ(λ+ µ) = χ(λ)χ(µ) eiπA(λ,µ)



176 U. Bruzzo et al. / Journal of Geometry and Physics 39 (2001) 174–182

for all λ,µ ∈ Λ. The group structure is the one given by

(A1, χ1) · (A2, χ2) = (A1 + A2, χ1χ2).

The isomorphism Pic(T ) � P(Λ) is the Appell–Humbert theorem for real tori. Via the
isomorphism Alt2(Λ,Z) � H 2(T ,Z), the form A is to be identified with the first Chern
class of L. In this way we have an exact sequence

0 → HomZ(Λ,U(1))→ Pic(T )
c1→H 2(T ,Z)→ 0

and the kernel HomZ(Λ,U(1)), whose elements are isomorphism classes of flat line bun-
dles, is isomorphic to the dual torus T̂ = V ∨/Λ∨ (here V ∨ = HomR(V ,R), Λ∨ =
HomZ(Λ,Z)). To every point y ∈ T̂ there corresponds a flat line bundle Ly whose associ-
ated pair is

Ay = 0, χy(λ) = e2iπy(λ).

The description of the bundle L by means of the pair (A, χ) allows one to give an ex-
plicit characterisation of the global sections of L. To this end one introduces the factor of
automorphy of the pair (A, χ), defined as the map

aL : V ×Λ→ U(1), aL(x, λ) = χ(λ) eiπA(x,λ)

(here A has been extended to V × V in the natural way).

Proposition 2.1. Let L be a line bundle on T , corresponding to the pair (A, χ) ∈ P(Λ).
The global sections of L are in a one-to-one correspondence with the smooth functions
s : V → C satisfying the automorphy condition

s(x + λ) = aL(x, λ)s(x)
for all x ∈ V , λ ∈ Λ.

Proof. The proof is a (simplified) replica of the one holding in the case of complex tori
[10] and will, therefore, be omitted. �

The action of an automorphism ofL changes the factor of automorphy; an automorphism
of L is induced by a map φ : V → U(1), and the new factor of automorphy is

aL(x, λ)
′ = φ(x + λ)aL(x, λ)φ(x)−1.

2.2. The Poincaré bundle

Now we use these tools to describe the Poincaré bundle P on the product T × T̂ . The
line bundle P is associated with the pair (A, χ) ∈ P(Λ×Λ∨), where

A((λ1, µ1), (λ2, µ2) = µ1(λ2)− µ2(λ1), χ(λ, µ) = eiπµ(λ).

The corresponding factor of automorphy is

aP (x, y, λ, µ) = eiπ [y(λ)−µ(x)−µ(λ)].



U. Bruzzo et al. / Journal of Geometry and Physics 39 (2001) 174–182 177

It is convenient to apply the automorphism induced by the map

φ : V × V ∨ → U(1), φ(x, y) = eiπy(x)

thus obtaining a new factor of automorphy

a′
P (x, y, λ, µ) = e2iπy(λ). (1)

This description of the Poincaré bundle shows explicitly that P|T×{y} � Ly .
Let ∇P be the Levi-Civita connection of P . Its connection formA is written in the gauge

where the factor of automorphy of P has the form (1) as

A = −2iπ
g∑
j=1

xj dyj , (2)

where (x1, . . . , xg) are flat coordinates on T and (y1, . . . , yg) are dual flat coordinates on
T̂ . The restriction ∇P|T×{y} is the Levi-Civita connection of Ly .

If we act on aP with the automorphism φ(x, y) = e−iπy(x) we obtain the factor of
automorphy a′′

P (x, y, λ, µ) = e−2iπµ(x) which shows that, after the identification T̂ � T ,

the dual bundle P∨ is a Poincaré bundle for T̂ × T .

3. The absolute case

3.1. Some relevant categories

For every real torus T we shall consider the category Mod(CT ) of CT -modules, where
CT is the constant sheaf on T , and two full subcategories, namely,

1. the subcategory Sky(T ) of skyscrapers of total finite length (i.e., dimH 0(T ,M) < ∞
for allM ∈ Ob(Sky(T )));

2. the subcategory Loc(T ) of local systems, i.e., locally free CT -modules of finite rank.
We shall also need to consider the following categories:

3. the category Mod(C∞
T ) of C∞

T -modules, where C∞
T is the sheaf of germs ofC∞

C-valued
functions on T ;

4. the category Vect0(T ) of flat vector bundles on T . Objects in this category may be
regarded as pairs (E,∇), where E is a smooth complex vector bundle and ∇ : E →
E ⊗ Ω1

T is a flat connection on it (Ω1
T is the sheaf of differential 1-forms on T ). 1

1 One should notice that one can consider connections on any C∞
T -module E , not just locally free ones; a

connection is a map ∇ : E → E ⊗Ω1
T satisfying the Leibniz rule

∇(fs) = f∇(s)+ s ⊗ df.

More intrinsically, a connection on E is a splitting of the exact sequence

0 → E ⊗Ω1
T → J (E)→ E → 0,

where J (E) is the first jet extension of the sheaf E .
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A morphism (E1,∇1)→ (E2,∇2) is a morphism φ : E1 → E2 of C∞
T -modules which

is compatible with the connections, i.e., ∇2 ◦ φ = (φ ⊗ 1) ◦ ∇1.

There are two naturally defined functors. The first one maps Mod(CT ) into Mod(C∞
T ),

and its action on the objects is

M �→ M ⊗CT C∞
T .

The second functor maps Loc(T ) into Vect0(T ), and with a local system S associates the
vector bundle E = S⊗CT C∞

T and the connection defined by

∇(s ⊗ f ) = s ⊗ df,

where d is the exterior differential. In both cases the action of the functors on morphisms
is naturally defined. The second functor establishes an equivalence of categories between
Loc(T ) and Vect0(T ) (cf. [7]); its inverse maps the pair (E,∇) to the CT -module ker ∇.

3.2. Complexes associated with the Poincaré sheaf

We turn now our attention to the Poincaré sheaf P on T × T̂ , where T is a real torus
of any dimension g. We denote by p, p̂ the projections onto the two factors of T × T̂ . To
simplify notation we shall set

Ωm,n = p∗ΩmT ⊗C∞
T×T̂

p̂∗Ωn
T̂
,

where p∗ denotes the pullback of C∞-modules, i.e.,

p∗E = p−1E ⊗p−1C∞
T
C∞
T×T̂ ,

and similarly for p̂∗.
The Levi-Civita connection ∇P of P has a Künneth splitting into two operators

∇1 : P → P ⊗Ω1,0, ∇2 : P → P ⊗Ω0,1

both squaring to zero (but their anticommutator is the curvature of ∇P ). The action of ∇1,
∇2 on functions is locally written in the form

∇1f =
g∑
j=1

∂f

∂xj
dxj , ∇2f =

g∑
j=1

(
∂f

∂yj
− 2iπxj f

)
dyj . (3)

Let E be a C∞
T -module with a flat connection ∇. By pulling the pair (E,∇) back to T × T̂

and coupling it with the pair (P,∇1) we obtain a complex

0 → ker ∇E1 → p∗E ⊗ P∇E1→p∗E ⊗ P ⊗Ω1,0∇E1→p∗E ⊗ P ⊗Ω2,0 → · · · .
Since locally the operator ∇E1 coincides with the exterior differential, this sheaf complex is
exact, and is a fine resolution of the sheaf ker ∇E1 . Thus we obtain an isomorphism

Hi(T × T̂ , ker ∇E1 ) � Hi(Γ (p∗E ⊗ P ⊗Ω•,0),∇E1 ), i ≥ 0
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between the cohomology of the sheaf ker ∇E1 and the cohomology of the complex Γ (p∗E⊗
P ⊗Ω•,0) (where Γ is the global sections functor) acted upon by the differential ∇E1 .

The same results hold for the operator ∇2. The cohomology of the complex (Γ (P∨ ⊗
Ω0,•),∇2) will be computed in Section 3.4.

3.3. The functor Sky(T )→ Loc(T̂ )

We now define the functorF : Sky(T )→ Loc(T̂ ). LetM be a skyscraper of finite length
on T . By additivity it suffices to consider the case where M is supported at a single point
x of T . With M we associate the C∞

T -moduleM = M ⊗CT C∞
T . At first we produce an

object (E, ∇̂) in Vect0(T̂ ). Indeed one checks that the direct image

p̂∗(p∗M⊗ P)
is locally free of finite rank, so that it is the sheaf of sections of a vector bundle E with
rkE = length(M). Moreover, the operator ∇2 naturally extends to p∗M ⊗ P , and since
the latter sheaf is supported on {x} × T̂ , it induces an operator ∇ : E → E ⊗Ω1

T̂
which is

a flat connection.
The objectF(M) in Loc(T̂ ) is obtained by takingF(M) = ker ∇. Standard checks show

that this procedure does define a functor.

Example 3.1. Let k(x)denote the one-dimensional skyscraper atx ∈ T . One hasF(k(0)) �
C
T̂

. Indeed, in this case we have p∗M⊗ P � C∞
{0}×T̂ and in view of Eqs. (2) and (3), the

operator ∇2 reduces on this sheaf to the exterior differential along the T̂ direction. As a
consequence (E,∇) = (C∞

T̂
, d), and F(k(0)) = ker d � C

T̂
.

For every x ∈ T let tx be the associated translation, tx(x′) = x + x′. Moreover, identify
T̂ with T . The following result is easily proved.

Proposition 3.2. Regard F as taking values in Vect0(T̂ ). For every x ∈ T and M ∈
Ob(Sky(T )) there is an isomorphism F(t−1

x M) � L−x ⊗ F(M).

As a consequence, in view of Example 3.1, we have

Corollary 3.3. For every x ∈ T one has F(k(x)) � L−x .

This defines the action of the functor F on the whole category Sky(T ).

3.4. The functor Loc(T̂ )→ Sky(T )

It is not clear how to define an inverse for the functor F by means of the adjunction
theory for C-modules. In this section we shall rather give a direct construction of a functor
F̂ : Loc(T̂ ) → Sky(T ) which inverts the functor F . We shall construct the functor by
starting from objects in Vect0(T̂ ). If (E,∇) is such an object, let E be the sheaf of sections
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of E. As we did in Section 3.3, but reverting the roles of T and T̂ , we consider on the sheaf
p̂∗E ⊗ P∨ an operator ∇E2 obtained by coupling (the pullback of) ∇ with the operator ∇2.
We shall eventually prove the following proposition.

Proposition 3.4.

1. Rjp∗ ker ∇E2 = 0 for j = 0, . . . , g − 1;
2. The sheaf Rgp∗ ker ∇E2 is a skyscraper of finite length.

The functor F̂ is defined as F̂((E,∇)) = Rgp∗ ker ∇E2 .

As a first step we compute the action of F̂ on the trivial line bundle, i.e., we take E = C∞
T̂

and ∇ = d. Thus we want to compute the sheaves Rjp∗ ker ∇2. To this end we shall study
the presheaves

U � Hj(U × T̂ , ker ∇2) � Hj((P∨ ⊗Ω0,•)(U × T̂ ),∇2),

whose associated sheaves are exactly the sheaves we are interested in.
As a first result we have the following proposition.

Proposition 3.5. H 0(U × T̂ , ker ∇2) = 0 for all open sets U ⊂ T , so that p∗ ker ∇2 = 0.

Proof. An element ofH 0(U× T̂ , ker ∇2) restricted to {x}× T̂ , with x ∈ U , yields a global
section of Lx , which is zero unless x = 0. By a density argument we get the result. �

To compute the higher-order direct images we first consider the case g = 1.

Proposition 3.6. If g = 1, then R1p∗ ker ∇2 � k(0).

Proof. We compute the cohomology groupsH 1(U × T̂ , ker ∇2) � H 1((P∨ ⊗Ω0,•)(U ×
T̂ ),∇2). We represent T as R = /Zλ with λ ∈ R and T̂ = R/Zµ with µ = 1/λ. LetW be
the inverse image of U in R.

We work now in a gauge where the factor of automorphy ofP∨ is e2iπµ(x), and the operator
∇2 is the T̂ -part of the exterior differential. An element in ((P∨ ⊗Ω0,1)(U × T̂ ), ker ∇2)

may be written as τ = t (x, y) dy, where t is a function onW×V ∨ satisfying the automorphy
condition

t (x, y + µ) = t (x, y) e2iπµ(x).

If τ is a coboundary, τ = ∇2s, one has

s(x, y) =
∫ y

0
t (x, u) du+ c(x).

The function s must satisfy the automorphy condition, which amounts to the following
condition on c:

c(x)(1 − e2iπµ(x)) = −
∫ µ

0
t (x, u) du. (4)
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If 0 /∈ U this condition may be solved for c, so that H 1(U × T̂ , ker ∇2) = 0. Thus
R1p∗ ker ∇2 is a skyscraper supported at 0 ∈ T .

If 0 ∈ U , the condition (4) may be solved if and only if∫ µ

0
t (0, u) du = 0,

so that H 1(U × T̂ , ker ∇2) � C. This proves the claim. �

We move to the higher-dimensional case by means of a Künneth-type argument.

Proposition 3.7. If dim T = g we have

1. Rjp∗ ker ∇2 = 0 for j = 0, . . . , g − 1;
2. Rgp∗ ker ∇2 � k(0).

Proof. A choice of flat coordinates (x1, . . . , xg) on T fixes an isomorphism T � S1 ×
· · · S1. The Poincaré sheafP on T × T̂ is the tensor product of the pullbacks of the Poincaré
sheavesPi on the i factors of T ×T̂ , as one can check for instance by describing the Poincaré
bundles by their factors of automorphy. Let U ⊂ T be of the form U = U1 × · · · × Ug ,
where each Ui lies in a factor of T̂ . If g = 2, a word-by-word translation of the Künneth
theorem for de Rham cohomology (cf., e.g. [5]) gives a decomposition

Hj(U × T̂ , ker ∇2) = ⊕
m+n=j

Hm(U1 × S1, ker ∇1
2 )⊗Hn(U2 × S1, ker ∇2

2 ),

whence we have, by Proposition 3.5,

Hj(U × T̂ , ker ∇2) = 0 for j = 0, 1, H 2(U × T̂ , ker ∇2) � C.

Induction on g then yields, for every g,

Hj(U × T̂ , ker ∇2) = 0 for j = 0, . . . , g − 1, Hg(U × T̂ , ker ∇2) � C.

This proves both claims. �

So we have also obtained

Hj(T × T̂ , ker ∇2) =
{

0 for j = 0, . . . , g − 1,

C for j = g.

The C∞(T )-module structure of the gth cohomology group is given by f · α = f (0)α.

Remark 3.8. The difference in the definitions of the functors F and F̂ is only apparent;
ifM is a skyscraper on T , the operator ∇1 vanishes on the sheaf p−1M ⊗ P , so that F is
formally identical with F̂ .
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3.5. The equivalence

Let Lx be the local system corresponding to the line bundle Lx with its flat connection.
In analogy with Proposition 3.2, we have

Proposition 3.9. F̂(L−x ⊗C
T̂
S) � t−1

x F̂(S) for every x ∈ T and every local system S

on T̂ .

Corollary 3.10. F̂(L−x) � k(x) for every x ∈ T .

Remark 3.11. Since any flat vector bundle on a torus is a direct sum of flat line bundles
(i.e., every local system on T̂ is a direct sum of local systems of the type Lx), Corollary
3.10 completely describes the action of the functor F̂ .

Corollaries 3.3 and 3.10 and Remark 3.11 eventually prove the following theorem.

Theorem 3.12. The functors F , F̂ are inverse to each other, and establish an equivalence
between the categories Sky(T ) and Loc(T̂ ).

Again, any question related to the behaviour of morphisms under the functor F̂ is simply
a matter of routine checks.
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